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Machine learning meets PVsyst: A novel framework to detect,
classify, and forecast faults in utility-scale PV

Sijin Wang', Brendan Wright', Ali Shakibal, Abhnil Prasad'!, Marcus Vengas?, Felix Daddo?, Georgia Tovich?,

Remi Coni?, Deyang Su?®, John Rodriguez!, Ziv Hameiri* UNSW

>
".
-

The University of New South Wales, Australia, 2Spark Renewables, Australia, 3Jinko Solar, Australia SYDNEY
Introduction | In-line detection | Fault classification
« Utility-scale photovoltaic (PV) farms are growing, making reactive * When running the model In Iline with the  Cluster 2 shows pronounced underperformance in both
operation and maintenance (O&M) more costly and challenging [1] measurements, red regions indicate underperformance morning and afternoon, likely due to tracker issues
* We propose a machine learning (ML) based method to detect faults in * The flexible timestep enables the sample-by-sample * Cluster 5 could be an early alert for ground fault, which
real time, classify the faults, and potentially forecast near future faults comparison between the measured and ML-predicted will be discussed in the next session
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* The output data includes the PVsyst-simulated power from each inverter Fig. 3 — A comparison between the measured and ML-predicted power Fig. 4 — Two example fault classification clusters
| In-line fault detection I Fault forecasting
[ Weather I
| \ | * Forecast faults using the frequent patterns seen in the historical data to trigger an early alert before a fault
- Compare .
= Measured power 4—p—» ML expected « For example, Cluster 5 occurred on 28% Feb, which could serve as an early alert for a ground fault (12 days later,
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| — lr [ the inverter was shut down, and the logbook recorded an underground cable problem)
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| I Early alert Fig. 5 — An example of an early alert Shutdown
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[ | * We developed a novel, end-to-end pipeline to detect, classify, and forecast faults in utility-scale PV farms
| Early alert Shutdown [ » An ML model was deployed in real time with a flexible time step to compare with the measured data
Fig. 2 — Workflow of the proposed ML pipeline * Another model was developed to classify the faults; some clusters could provide an early alert for forecasting faults
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* The classification algorithm groups together the days with similar features L While rule-based models require manual rule updates for each PV system, this pipeline is fully autonomous Y,
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