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• Utility-scale photovoltaic (PV) farms are growing, making reactive 

operation and maintenance (O&M) more costly and challenging [1]

• We propose a machine learning (ML) based method to detect faults in 

real time, classify the faults, and potentially forecast near future faults

• We developed a novel, end-to-end pipeline to detect, classify, and forecast faults in utility-scale PV farms

• An ML model was deployed in real time with a flexible time step to compare with the measured data

• Another model was developed to classify the faults; some clusters could provide an early alert for forecasting faults

• While rule-based models require manual rule updates for each PV system, this pipeline is fully autonomous

• The test site is a 120 MWp PV farm with north-south single-axis tracking

• An ML model was built as an interpolated PVsyst with a flexible timestamp

Fig. 1 – A comparison between the measured daily power profile and the power predicted by the 

(a) PVsyst and (b) ML models

Fig. 2 – Workflow of the proposed ML pipeline

• When running the model in line with the 

measurements, red regions indicate underperformance

• The flexible timestep enables the sample-by-sample 

comparison between the measured and ML-predicted 

power

Fig. 3 – A comparison between the measured and ML-predicted power

• Cluster 2 shows pronounced underperformance in both 

morning and afternoon, likely due to tracker issues

• Cluster 5 could be an early alert for ground fault, which 

will be discussed in the next session

Fig. 4 – Two example fault classification clusters

Fig. 5 – An example of an early alert
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• The classification algorithm groups together the days with similar features

Cluster 2

• The ML input is the on-site measured weather data

• The output data includes the PVsyst-simulated power from each inverter

Fault forecasting

• Forecast faults using the frequent patterns seen in the historical data to trigger an early alert before a fault

• For example, Cluster 5 occurred on 28th Feb, which could serve as an early alert for a ground fault (12 days later, 

the inverter was shut down, and the logbook recorded an underground cable problem)

Catchy!Highlight!

Fault classification

Cluster 5
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