

Using Machine Learning to Predict the Complete Degradation of Accelerated Damp Heat Testing in Just 10% of the Time

Zubair Abdullah-Vetter, Priya Dwivedi, Robert Lee Chin, Brendan Wright, Thorsten Trupke, Ziv Hameiri The University of New South Wales, Sydney NSW 2052, Australia

Introduction

- Precisely determining the performance of modules after 25-30 years in the field have substantial benefits for the photovoltaic market
- Accelerated damp heat (DH) testing at 85 °C and 85% relative humidity is a common method to study the reliability of photovoltaic (PV) modules [1]
- We propose the use of deep learning to model the changes in the performance of PV modules during the DH test
- The trained ordinary differential equation network (ODN) [2] is used to model the complete process using ONLY the first 10% of the testing time

Methodology

- Samples:
- Mini-modules of four cells. Cells were taken from different efficiency bins (22.6% - 23%), including rejected cells
- Modules fabricated using 3 mm thick soda-lime glass, an ethylene vinyl acetate (EVA) encapsulant, and a polyethylene terephthalate (PET) based backsheet
- Environmental chamber:
 - Internal dimensions 500×500×600 mm (ASLI TH-150C)
 - Modified to include an in-situ dark current-voltage (I-V) (Fig. 1) and in-situ electroluminescence (EL) imaging
- Measurements (every 48 hours, besides the in-situ measurements):
 - Light I-V measurements (SPIRE Eternal Sun)
 - EL and line-scan photoluminescence (PL) imaging (BTi M1)

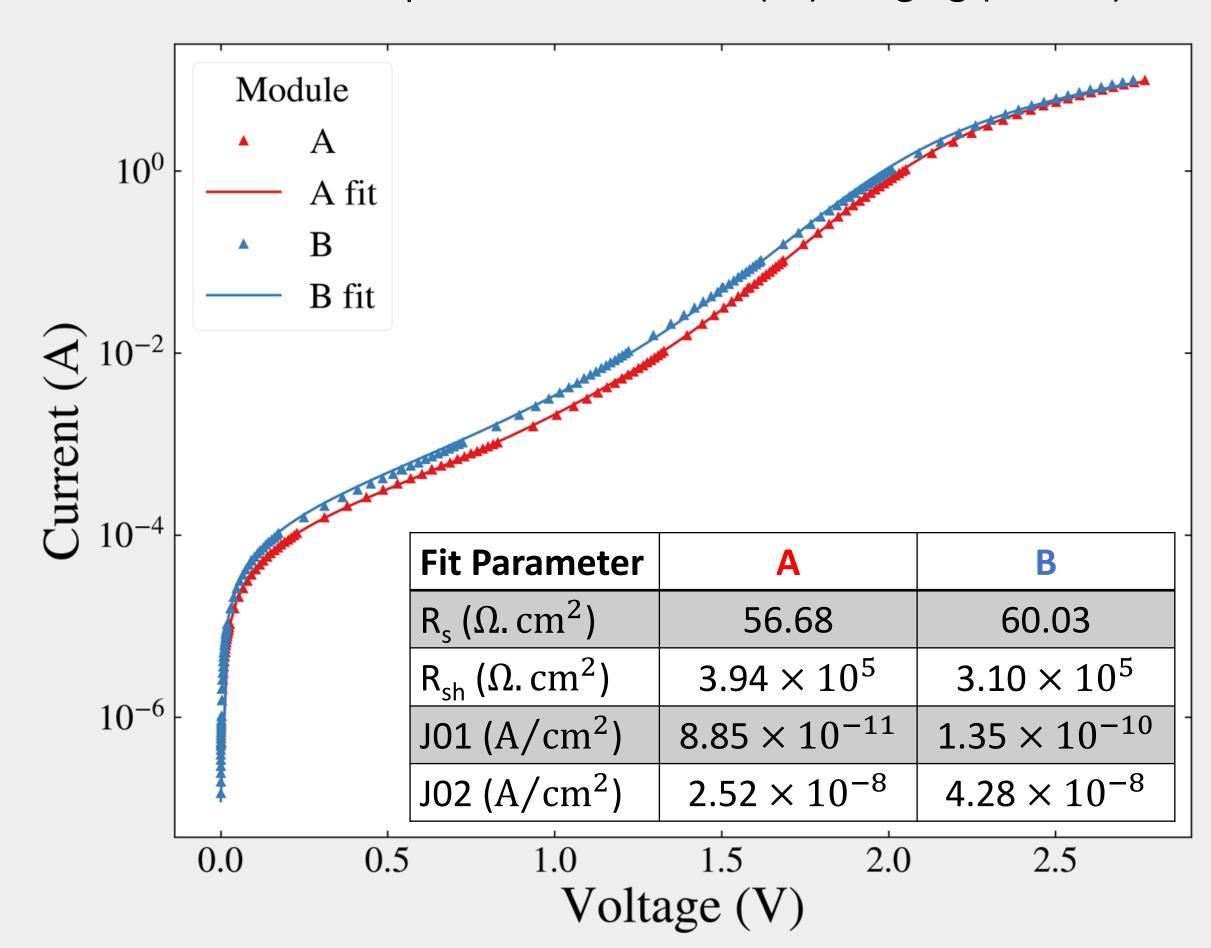


Fig. 1 – Representative examples of in-situ dark I-V measurements and their extracted fit values

Results

- Currently passed 1,500 hours of DH test of the first batch of 11 modules
- Several modules are showing signs of increased series resistance (R_s) while increased recombination can be identified in others
- As shown in Fig. 2 (b & d), the circled areas show an increase in R_s

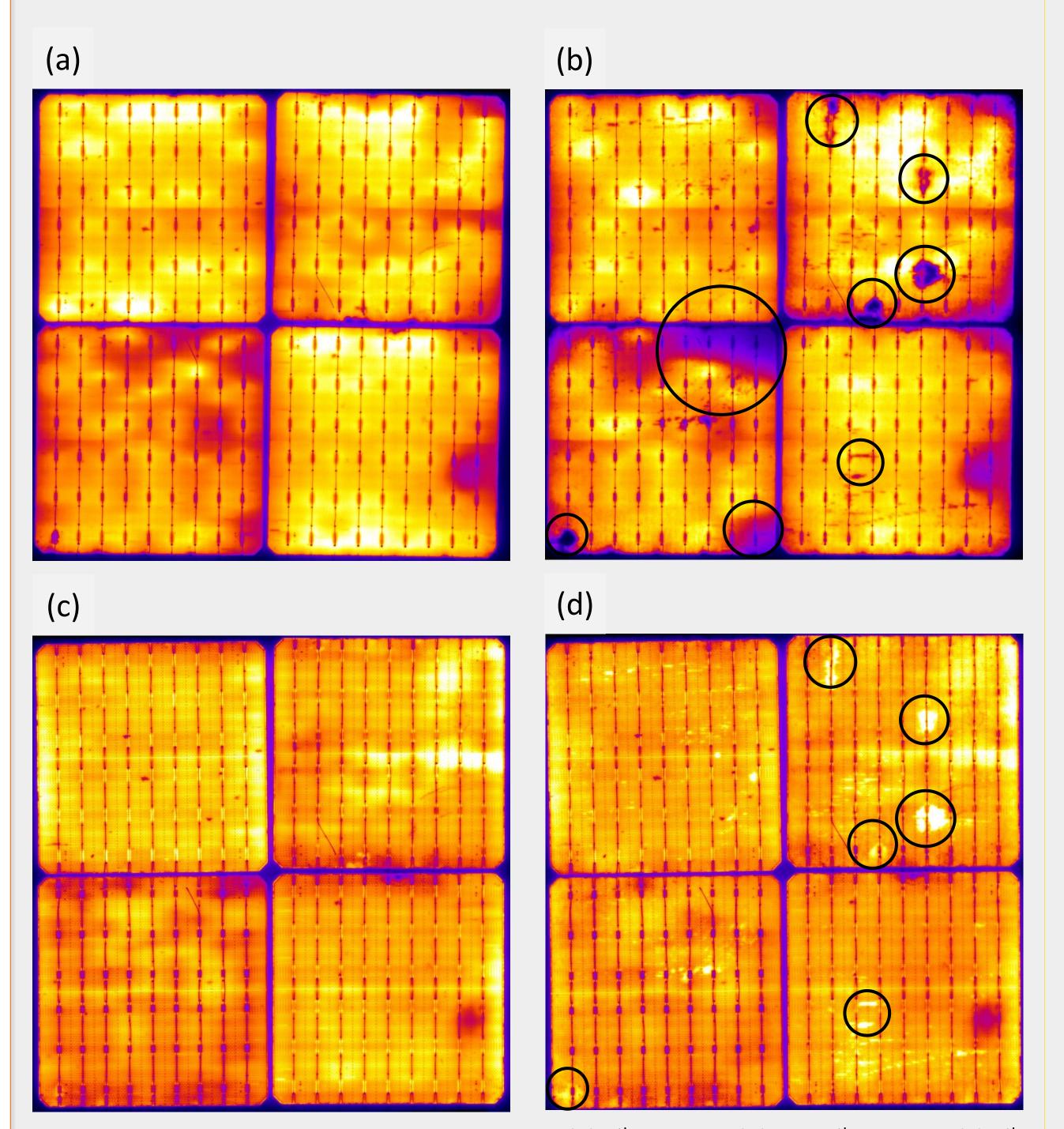
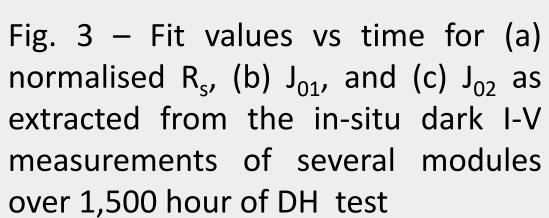
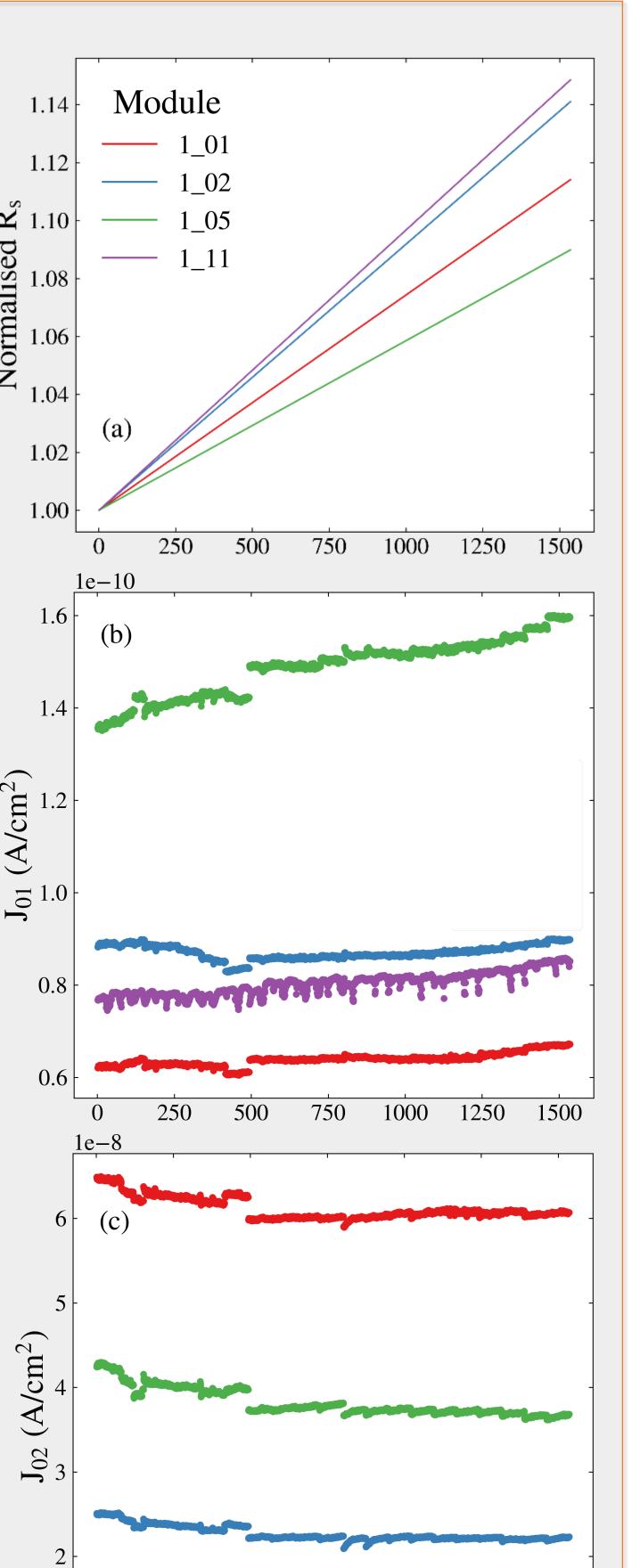


Fig. 2 – Images of a representative sample after (a) 0th hour EL, (b) 1,500th hour EL, (c) 0th hour line-scan PL, and (d) 1,500th hour line-scan PL

- The two diode model [4] was used to fit the in-situ dark I-V measurements
- Changes in the fit values over time for several samples are shown in Fig. 3
- R_s increases during the DH experiment. This aligns with the images in Fig. 2
- J₀₁ increases during the DH experiment, however, the trend is found to be quite different for each module
- J₀₂ decreases slightly at later hours of the DH experiment. This suggests a reduction in the edge and/ or junction recombination





Marches a sessibilitation of the line of t

Hour

750 1000 1250 1500

normalised R_s , (b) J_{01} , and (c) J_{02} as extracted from the in-situ dark I-V measurements of several modules over 1,500 hour of DH test

Deep Learning

- ODN methodology used as an unsupervised learning approach
- Training of recurrent neural network (RNN), ODN and neural network (NN) (Fig. 4) to convert the dataset to latent states, which improves the prediction of the modules' performance over time [3]

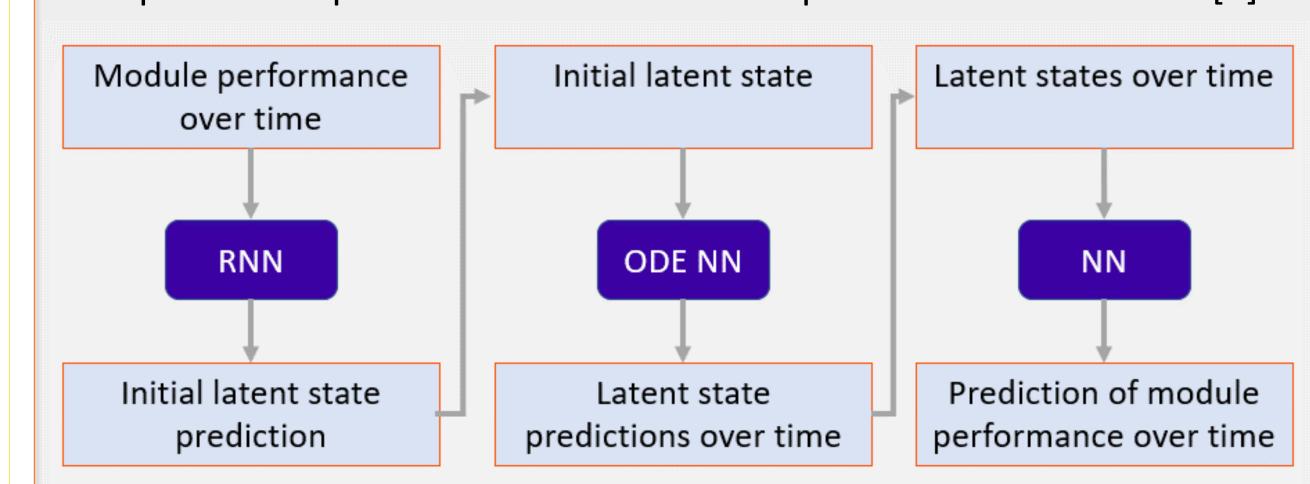


Fig. 4 – Diagram of the proposed machine learning methodology

Conclusions and Next Steps

- ODE-based deep learning methodology can predict modules' performance throughout the DH test
- By predicting the DH dynamics, future performance can be determined in a much shorter testing time
- The proposed method has considerable advantages for the longterm reliability and bankability of photovoltaic systems
- In-situ measurements has proved to be very useful for the extraction of high temporal resolution I-V and EL imaging data

Acknowledgements

This work was supported by the Australian Government through the Australian Renewable Energy Agency (ARENA, Grant 2020/RND016).

References

- International Electrotechnical Commission, "IEC 61215-1:2021," 2021
- 2. S. Kim et al., "Stiff neural ordinary differential equations," Chaos, vol. 31, no. 9, p. 093122, 2021.
- 3. B. Wright and B. Hallam, "Applied machine learning to model LID dynamics in SHJ solar cells," 11th SiliconPV Conference, 2021
- 4. M. Green, "Solar Cells: Operating Principles, Technology and System Applications," 1981.

