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Conclusions and Next Steps
• ODE-based deep learning methodology can predict modules’

performance throughout the DH test

• By predicting the DH dynamics, future performance can be

determined in a much shorter testing time

• The proposed method has considerable advantages for the long-

term reliability and bankability of photovoltaic systems

• In-situ measurements has proved to be very useful for the

extraction of high temporal resolution I-V and EL imaging data

Introduction
• Precisely determining the performance of modules after 25-30 years

in the field have substantial benefits for the photovoltaic market

• Accelerated damp heat (DH) testing at 85 ℃ and 85% relative

humidity is a common method to study the reliability of photovoltaic

(PV) modules [1]

• We propose the use of deep learning to model the changes in the

performance of PV modules during the DH test

• The trained ordinary differential equation network (ODN) [2] is used

to model the complete process using ONLY the first 10% of the

testing time

• Currently passed 1,500 hours of DH test of the first batch of 11

modules

• Several modules are showing signs of increased series resistance

(Rs) while increased recombination can be identified in others

• As shown in Fig. 2 (b & d), the circled areas show an increase in Rs

Methodology
• Samples:

o Mini-modules of four cells. Cells were taken from different

efficiency bins (22.6% - 23%), including rejected cells

o Modules fabricated using 3 mm thick soda-lime glass, an

ethylene vinyl acetate (EVA) encapsulant, and a polyethylene

terephthalate (PET) based backsheet

• Environmental chamber:

o Internal dimensions 500×500×600 mm (ASLI TH-150C)

o Modified to include an in-situ dark current-voltage (I-V) (Fig. 1)

and in-situ electroluminescence (EL) imaging

• Measurements (every 48 hours, besides the in-situ measurements):

o Light I-V measurements (SPIRE Eternal Sun)

o EL and line-scan photoluminescence (PL) imaging (BTi M1)

Fig. 1 – Representative examples of in-situ dark I-V measurements and
their extracted fit values

Results
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(c) (d)

Fig. 2 – Images of a representative sample after (a) 0th hour EL, (b) 1,500th hour EL, (c) 0th

hour line-scan PL, and (d) 1,500th hour line-scan PL

Deep Learning
• ODN methodology used as an unsupervised learning approach

• Training of recurrent neural network (RNN), ODN and neural

network (NN) (Fig. 4) to convert the dataset to latent states, which

improves the prediction of the modules’ performance over time [3]

Fig. 4 – Diagram of the proposed machine learning methodology

Fig. 3 – Fit values vs time for (a)
normalised Rs, (b) J01, and (c) J02 as
extracted from the in-situ dark I-V
measurements of several modules
over 1,500 hour of DH test

• The two diode model [4] was

used to fit the in-situ dark I-V

measurements

• Changes in the fit values over

time for several samples are

shown in Fig. 3

• Rs increases during the DH

experiment. This aligns with

the images in Fig. 2

• J01 increases during the DH

experiment, however, the

trend is found to be quite

different for each module

• J02 decreases slightly at later

hours of the DH experiment.

This suggests a reduction in

the edge and/ or junction

recombination

Fit Parameter A B
Rs (Ω. cm2) 56.68 60.03
Rsh (Ω. cm2) 3.94 × 105 3.10 × 105

J01 ( ⁄A cm2) 8.85 × 10−11 1.35 × 10−10

J02 ( ⁄A cm2) 2.52 × 10−8 4.28 × 10−8
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